Function to estimate daily time series models

DaysModelFitter(data, Outcome)

Arguments

data

A tsibble.

Outcome

A valid variable name for the Outcome to be modelled in in `data`.

Value

A mable containing:

  • K=1,2,3: ARIMA models with fourier(K=1,2,3)

  • ARIMA: an ARIMA model

  • ETS: an ETS model

  • NNETAR(K=1,2,3): the model fits

  • prophet.Linear: a prophet model with linear trend

  • prophet.Logis: a prophet model with logistic trend

  • Combo1: the average of ETS and ARIMA

Examples

data(fb_returns) DaysModelFitter(fb_returns, daily.returns)
#> Warning: 1 error encountered for K = 1 #> [1] K must be not be greater than period/2
#> Warning: 1 error encountered for K = 2 #> [1] K must be not be greater than period/2
#> Warning: 1 error encountered for K = 3 #> [1] K must be not be greater than period/2
#> Warning: 1 error encountered for NNET1 #> [1] K must be not be greater than period/2
#> Warning: 1 error encountered for NNET2 #> [1] K must be not be greater than period/2
#> Warning: 1 error encountered for NNET3 #> [1] K must be not be greater than period/2
#> Warning: 1 error encountered for prophet.Linear #> [1] 'origin' must be supplied
#> Warning: 1 error encountered for prophet.Logis #> [1] 'origin' must be supplied
#> # A mable: 1 x 11 #> `K = 1` `K = 2` `K = 3` ARIMA ETS #> <model> <model> <model> <model> <model> #> 1 <NULL model> <NULL model> <NULL model> <ARIMA(0,0,0) w/ mean> <ETS(A,N,N)> #> # … with 6 more variables: NNET1 <model>, NNET2 <model>, NNET3 <model>, #> # prophet.Linear <model>, prophet.Logis <model>, Combo1 <model>