Environments, Ordering, and the Nuts and Bolts of R
1/17/23
RStudio has tons of useful Addins that are useful for specialized tasks.
esquisse
.R is a object oriented programming language for data. All kinds of things can be objects. Data, models, graphics, essentially anything that results from applying a function to an object.
>
<-
) go there.?
before the command.We will think and talk about data organized in a tidy
way where rows represent cases/units/observations and columns represent variables. Many standard forms of enterprise data are not stored in this way though they could be. Accounting data come to mind where there are data
in the column names. There are tools that we will later encounter for pivoting
from long to wide forms where the tidy
and long forms are synonymous.
There is 'something' or there is "something"
There is 'Hello World!' or there is "Hello World!"
The global environment in RStudio helps us out. There is a special combined data structure in R – the data.frame
– that combines data of different types organized with units defining the rows and variables defining the columns.
Though it is all base R, Keith McNulty, the Global Leader of Talent Science and Analytics at McKinsey and Company, has a great chapter on the basics of R that is linked here. It’s a really nice book.
Their website is great. They have an excellent collection of webinars on special topics of a variety of sorts.
Tools > Global Options provides a lot of customization.
Markdown Quick Reference and Cheatsheets under Tools and on the RStudio website are both great.
It is a wonderful technology for repeated tasks and for transparent communication with data. I will use it extensively. A Markdown is a Sandbox, it does not start with packages, libraries, or commands. It is best to work with RStudio via the play button for code chunks and the play all above to make sure that everything syncs up. One can find a template, with associated help under Help
.
File > New file > R Markdown
We are working with FastFood.Rmd – an R Markdown file.
I would strongly encourage you to check out this video on R Markdown from RStudio. I forgot to mention that markdown is the language of reddit.
When the Environment
tab is active in the top right of the RStudio. You will see a tab called Import Dataset
. The first thing to note is that R reads a number of data types [and link to databases and things].
To import Excel data, From Excel
- We have to give it a file name. NB Paths.
That’s not exacly what I hoped for.
There are intermediate steps to downloading it and checking the sheets that it does not do with remote files. The code automagically reflects this.
When the Environment
tab is active in the top right of the RStudio. You will see a tab called Import Dataset
. The first thing to note is that R reads a number of data types [and link to databases and things].
To import Excel data, From Excel
- We have to give it a file name. NB Paths.
- We have to choose a sheet.
- Types of variables.
- Missing data values.
- Ranges
This will have to be added to the RMarkdown file.
Operators:
+
-
*
/
The hardest thing to many learners about R is the scoping requirements and environments. We will deploy a collection of packages that have a very data centric view of this problem. Let me use our Fast Food example. I can type the name to see what it is. It dumps a lot to my screen.
# A tibble: 515 × 17
restau…¹ item calor…² cal_fat total…³ sat_fat trans…⁴ chole…⁵ sodium total…⁶
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Mcdonal… Arti… 380 60 7 2 0 95 1110 44
2 Mcdonal… Sing… 840 410 45 17 1.5 130 1580 62
3 Mcdonal… Doub… 1130 600 67 27 3 220 1920 63
4 Mcdonal… Gril… 750 280 31 10 0.5 155 1940 62
5 Mcdonal… Cris… 920 410 45 12 0.5 120 1980 81
6 Mcdonal… Big … 540 250 28 10 1 80 950 46
7 Mcdonal… Chee… 300 100 12 5 0.5 40 680 33
8 Mcdonal… Clas… 510 210 24 4 0 65 1040 49
9 Mcdonal… Doub… 430 190 21 11 1 85 1040 35
10 Mcdonal… Doub… 770 400 45 21 2.5 175 1290 42
# … with 505 more rows, 7 more variables: fiber <dbl>, sugar <dbl>,
# protein <dbl>, vit_a <dbl>, vit_c <dbl>, calcium <dbl>, salad <chr>, and
# abbreviated variable names ¹restaurant, ²calories, ³total_fat, ⁴trans_fat,
# ⁵cholesterol, ⁶total_carb
We referred to things via $
to unpack it. The RStudio remains smart about this; the elements in an object are [mostly] unpacked via $
. To find just calories in FastFood, I would need:
[1] 380 840 1130 750 920 540 300 510 430 770 380 620 530 700 250
[16] 290 640 580 740 350 380 480 580 520 680 570 530 530 670 560
[31] 730 690 630 800 370 480 760 1210 1510 2430 180 270 440 890 1770
[46] 640 960 1600 140 270 490 190 320 490 220 350 520 430 310 270
[61] 120 230 350 470 500 130 190 260 390 970 490 440 70 110 140
[76] 210 430 450 500 450 540 350 860 720 710 640 340 410 380 450
[91] 600 870 640 650 740 710 720 800 1280 1120 1130 1220 1120 450 450
[106] 450 610 680 430 570 450 280 470 740 1000 1350 380 560 350 610
[121] 970 1080 1190 330 440 550 730 100 370 430 410 340 320 500 210
[136] 830 320 330 400 450 630 650 690 690 540 650 690 550 540 360
[151] 510 640 480 710 740 750 610 300 680 710 840 240 360 600 680
[166] 550 710 520 800 620 740 590 600 430 650 1030 730 470 980 290
[181] 290 220 210 240 300 240 200 70 430 420 230 720 1550 1000 330
[196] 290 1040 730 1100 300 520 450 360 900 580 1220 260 550 990 940
[211] 310 1250 730 970 1100 770 900 990 660 760 340 380 590 720 550
[226] 690 530 670 560 700 320 450 220 230 830 440 530 410 480 730
[241] 290 190 290 950 470 570 580 430 670 470 330 310 300 630 340
[256] 410 840 210 530 410 700 760 1000 800 630 540 570 400 630 1030
[271] 1260 420 390 380 330 290 350 310 250 550 1050 760 260 470 400
[286] 640 540 350 780 580 910 350 500 640 520 280 600 350 380 150
[301] 360 280 20 550 320 640 430 860 580 1160 500 1000 180 290 580
[316] 330 660 570 1140 570 1140 460 920 370 740 470 940 410 820 550
[331] 1100 480 960 320 640 200 320 640 350 700 480 960 380 760 310
[346] 620 370 740 420 840 380 760 470 940 390 780 180 280 560 280
[361] 560 490 980 150 230 460 390 780 300 150 400 330 110 360 280
[376] 150 510 180 220 230 230 310 140 140 310 210 140 200 200 310
[391] 110 110 50 760 730 810 740 680 790 820 540 460 510 370 550
[406] 440 410 420 390 390 760 780 740 420 380 610 610 630 550 620
[421] 630 650 400 710 650 670 540 550 570 410 880 830 820 170 320
[436] 160 200 170 200 320 350 340 350 380 320 170 200 250 320 170
[451] 200 230 200 250 340 340 370 600 420 440 600 350 340 340 150
[466] 140 150 170 490 490 490 490 570 300 270 270 710 760 430 320
[481] 260 410 210 420 430 560 580 540 480 190 520 620 380 290 650
[496] 540 270 580 470 540 270 440 440 460 180 400 200 390 520 700
[511] 780 580 780 720 720
And to embed that into a function, I could have a function that takes some variable, call it x, adds them all up and divides by the total number:
\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i
By definition, the sum of the deviations about the average must be zero.
I tried to operate on a missing value. Let’s fix that for sum, also. NB: Floating point arithmetic
The average is sensitive to outlying values. Think income in Seattle and the samples that include Jeff Bezos, Paul Allen, MacKenzie Scott, and Bill Gates. That is why we examine the median – the value such that half are above and half are below; magnitude doesn’t matter.
The median is a percentile; it is the 50th percentile. We are often also interested in the middle 50 percent: the 25th and 75th percentiles or the first and third quartiles. In R, generically, these are quantiles.
0% 25% 50% 75% 100%
1.0 16.0 24.5 36.0 186.0
As a technical matter, the median is only unique with an odd number of observations; we approximate it with the midpoint of the middle two.
The most frequent value. If it is unique, it is meaningful but it is often not even a small set of values. R doesn’t calculate it. But it is visible in a density or histogram.
With means, we describe the standard deviation. Note, it is singular; it implies the two sides of the center are the same – symmetry. Because the deviations sum to zero, to measure variation, we can’t use untransformed deviation from an average. We work with squares [variance, in the squared metric] or the square root of squares [to maintain the original metric].
s=\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_{i}-\overline{x})^2}
We typically measure a range [min to max] or the interquartile range (IQR) – the span of the middle 50%.
0% 25% 50% 75% 100%
1.0 16.0 24.5 36.0 186.0
[1] 20
Here it spans 20 grams of protein. The total range is 185 grams of protein.
That operator $
is the first encounter with the scope
of something. We are trying to pull protein
from FastFood
. There are other basic operators in R to accomplish the same thing. We could have asked for the [even less typing-efficient] relevant row and column definition with:
If I want more than one, this becomes cumbersome. The tidyverse, built around a piping operator
– %>%
–, was developed as a solution to a data.frame centric form of analysis. Here’s how it works. We start with data and pipe
it so that the names are understood in the context of the data that we begin with. The main initial helper that we will make use of is skim
from the skimr
library.
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | restaurant | 0 | 1.0000000 | 5 | 11 | 0 | 8 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | 0 | 1.0000000 | 5 | 63 | 0 | 505 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | calories | 0 | 1.0000000 | NA | NA | NA | NA | NA | 530.9126214 | 282.4361471 | 20 | 330.0 | 490.0 | 690 | 2430 | ▇▆▁▁▁ |
numeric | cal_fat | 0 | 1.0000000 | NA | NA | NA | NA | NA | 238.8135922 | 166.4075099 | 0 | 120.0 | 210.0 | 310 | 1270 | ▇▃▁▁▁ |
numeric | total_fat | 0 | 1.0000000 | NA | NA | NA | NA | NA | 26.5902913 | 18.4118761 | 0 | 14.0 | 23.0 | 35 | 141 | ▇▃▁▁▁ |
numeric | sat_fat | 0 | 1.0000000 | NA | NA | NA | NA | NA | 8.1533981 | 6.4188107 | 0 | 4.0 | 7.0 | 11 | 47 | ▇▃▁▁▁ |
numeric | trans_fat | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.4650485 | 0.8396438 | 0 | 0.0 | 0.0 | 1 | 8 | ▇▁▁▁▁ |
numeric | cholesterol | 0 | 1.0000000 | NA | NA | NA | NA | NA | 72.4563107 | 63.1604061 | 0 | 35.0 | 60.0 | 95 | 805 | ▇▁▁▁▁ |
numeric | sodium | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1246.7378641 | 689.9542781 | 15 | 800.0 | 1110.0 | 1550 | 6080 | ▇▆▁▁▁ |
numeric | total_carb | 0 | 1.0000000 | NA | NA | NA | NA | NA | 45.6640777 | 24.8833420 | 0 | 28.5 | 44.0 | 57 | 156 | ▅▇▂▁▁ |
numeric | fiber | 12 | 0.9766990 | NA | NA | NA | NA | NA | 4.1371769 | 3.0374603 | 0 | 2.0 | 3.0 | 5 | 17 | ▇▅▂▁▁ |
numeric | sugar | 0 | 1.0000000 | NA | NA | NA | NA | NA | 7.2621359 | 6.7613015 | 0 | 3.0 | 6.0 | 9 | 87 | ▇▁▁▁▁ |
numeric | protein | 1 | 0.9980583 | NA | NA | NA | NA | NA | 27.8910506 | 17.6839207 | 1 | 16.0 | 24.5 | 36 | 186 | ▇▂▁▁▁ |
numeric | vit_a | 214 | 0.5844660 | NA | NA | NA | NA | NA | 18.8571429 | 31.3843303 | 0 | 4.0 | 10.0 | 20 | 180 | ▇▁▁▁▁ |
numeric | vit_c | 210 | 0.5922330 | NA | NA | NA | NA | NA | 20.1704918 | 30.5922427 | 0 | 4.0 | 10.0 | 30 | 400 | ▇▁▁▁▁ |
numeric | calcium | 210 | 0.5922330 | NA | NA | NA | NA | NA | 24.8524590 | 25.5220725 | 0 | 8.0 | 20.0 | 30 | 290 | ▇▁▁▁▁ |
skim_type | skim_variable | restaurant | n_missing | complete_rate | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
numeric | calories | Arbys | 0 | 1 | 532.7273 | 210.3388 | 70 | 360.0 | 550 | 690 | 1030 | ▃▆▇▇▂ |
numeric | calories | Burger King | 0 | 1 | 608.5714 | 290.4184 | 190 | 365.0 | 555 | 760 | 1550 | ▇▇▃▂▁ |
numeric | calories | Chick Fil-A | 0 | 1 | 384.4444 | 220.4948 | 70 | 220.0 | 390 | 480 | 970 | ▇▇▇▁▂ |
numeric | calories | Dairy Queen | 0 | 1 | 520.2381 | 259.3377 | 20 | 350.0 | 485 | 630 | 1260 | ▂▇▆▂▁ |
numeric | calories | Mcdonalds | 0 | 1 | 640.3509 | 410.6961 | 140 | 380.0 | 540 | 740 | 2430 | ▇▅▁▁▁ |
numeric | calories | Sonic | 0 | 1 | 631.6981 | 300.8816 | 100 | 410.0 | 570 | 740 | 1350 | ▃▇▆▂▃ |
numeric | calories | Subway | 0 | 1 | 503.0208 | 282.2210 | 50 | 287.5 | 460 | 740 | 1160 | ▅▇▃▃▂ |
numeric | calories | Taco Bell | 0 | 1 | 443.6522 | 184.3449 | 140 | 320.0 | 420 | 575 | 880 | ▆▇▇▃▂ |
skim_type | skim_variable | restaurant | n_missing | complete_rate | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
numeric | protein | Arbys | 0 | 1.0000000 | 29.25455 | 12.386101 | 5 | 20.0 | 29 | 38 | 62 | ▅▆▇▃▁ |
numeric | protein | Burger King | 1 | 0.9857143 | 30.01449 | 19.469050 | 5 | 16.0 | 29 | 36 | 134 | ▇▅▁▁▁ |
numeric | protein | Chick Fil-A | 0 | 1.0000000 | 31.70370 | 16.927026 | 11 | 23.5 | 29 | 37 | 103 | ▇▆▁▁▁ |
numeric | protein | Dairy Queen | 0 | 1.0000000 | 24.83333 | 11.544013 | 1 | 17.0 | 23 | 34 | 49 | ▂▇▅▅▃ |
numeric | protein | Mcdonalds | 0 | 1.0000000 | 40.29825 | 29.479390 | 7 | 25.0 | 33 | 46 | 186 | ▇▂▁▁▁ |
numeric | protein | Sonic | 0 | 1.0000000 | 29.18868 | 14.532532 | 6 | 18.0 | 30 | 35 | 67 | ▆▆▇▁▂ |
numeric | protein | Subway | 0 | 1.0000000 | 30.31250 | 16.144292 | 3 | 18.0 | 26 | 40 | 78 | ▆▇▆▂▁ |
numeric | protein | Taco Bell | 0 | 1.0000000 | 17.41739 | 7.135263 | 6 | 12.0 | 16 | 22 | 37 | ▇▇▆▃▂ |
skim_type | skim_variable | restaurant | n_missing | complete_rate | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|
numeric | sodium | Arbys | 0 | 1 | 1515.273 | 663.6651 | 100 | 960.0 | 1480 | 2020.0 | 3350 | ▂▇▇▃▁ |
numeric | sodium | Burger King | 0 | 1 | 1223.571 | 499.8841 | 310 | 850.0 | 1150 | 1635.0 | 2310 | ▅▇▅▆▂ |
numeric | sodium | Chick Fil-A | 0 | 1 | 1151.481 | 726.9203 | 220 | 700.0 | 1000 | 1405.0 | 3660 | ▇▇▂▁▁ |
numeric | sodium | Dairy Queen | 0 | 1 | 1181.786 | 609.9398 | 15 | 847.5 | 1030 | 1362.5 | 3500 | ▂▇▂▁▁ |
numeric | sodium | Mcdonalds | 0 | 1 | 1437.895 | 1036.1721 | 20 | 870.0 | 1120 | 1780.0 | 6080 | ▇▅▁▁▁ |
numeric | sodium | Sonic | 0 | 1 | 1350.755 | 665.1340 | 470 | 900.0 | 1250 | 1550.0 | 4520 | ▇▆▂▁▁ |
numeric | sodium | Subway | 0 | 1 | 1272.969 | 743.6346 | 65 | 697.5 | 1130 | 1605.0 | 3540 | ▅▇▃▁▂ |
numeric | sodium | Taco Bell | 0 | 1 | 1013.913 | 474.0544 | 290 | 615.0 | 960 | 1300.0 | 2260 | ▇▇▆▂▂ |
There are four main dplyr
verbs that we will play with, and some helpers.
filter()
filter
selects rows according to some set of conditions.
==
# A tibble: 115 × 17
restau…¹ item calor…² cal_fat total…³ sat_fat trans…⁴ chole…⁵ sodium total…⁶
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Taco Be… 1/2 … 540 230 26 7 1 45 1360 59
2 Taco Be… 1/2 … 460 170 18 7 1 45 1320 53
3 Taco Be… 7-La… 510 170 19 7 0 20 1090 68
4 Taco Be… Bean… 370 100 11 4 0 5 960 56
5 Taco Be… Beef… 550 200 22 8 0 35 1270 68
6 Taco Be… Beef… 440 160 18 5 0 20 1030 55
7 Taco Be… Blac… 410 110 12 4 0 10 1100 62
8 Taco Be… Burr… 420 140 16 7 0 35 1090 53
9 Taco Be… Burr… 390 110 12 5 0 40 1050 52
10 Taco Be… Burr… 390 120 13 5 0 30 1090 52
# … with 105 more rows, 7 more variables: fiber <dbl>, sugar <dbl>,
# protein <dbl>, vit_a <dbl>, vit_c <dbl>, calcium <dbl>, salad <chr>, and
# abbreviated variable names ¹restaurant, ²calories, ³total_fat, ⁴trans_fat,
# ⁵cholesterol, ⁶total_carb
filter
selects rows according to some set of conditions.
- Can use %in%
with a vector c()
.
# A tibble: 185 × 17
restau…¹ item calor…² cal_fat total…³ sat_fat trans…⁴ chole…⁵ sodium total…⁶
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Burger … Amer… 1550 1134 126 47 8 805 1820 21
2 Burger … Baco… 1000 585 65 24 3 200 1320 48
3 Burger … Baco… 330 140 16 7 0 55 830 32
4 Burger … Baco… 290 120 14 6 0.5 40 720 28
5 Burger … Baco… 1040 630 48 28 2.5 220 1900 48
6 Burger … Baco… 730 351 39 9 0 90 1930 63
7 Burger … BBQ … 1100 675 75 29 3 220 1850 51
8 Burger … Chee… 300 130 14 6 0 45 710 28
9 Burger … Doub… 520 280 31 14 1 105 1180 33
10 Burger … Doub… 450 230 26 12 1 95 960 29
# … with 175 more rows, 7 more variables: fiber <dbl>, sugar <dbl>,
# protein <dbl>, vit_a <dbl>, vit_c <dbl>, calcium <dbl>, salad <chr>, and
# abbreviated variable names ¹restaurant, ²calories, ³total_fat, ⁴trans_fat,
# ⁵cholesterol, ⁶total_carb
filter
selects rows according to some set of conditions.
FastFood %>% filter(startsWith(restaurant,"S")==TRUE) %>% group_by(restaurant) %>% skim() %>% kable() %>%
scroll_box(width = "100%", height = "500px")
skim_type | skim_variable | restaurant | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | item | Sonic | 0 | 1.0000000 | 8 | 48 | 0 | 53 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Subway | 0 | 1.0000000 | 7 | 58 | 0 | 96 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Sonic | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Subway | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | calories | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 631.6981132 | 300.8816267 | 100.0 | 410.00 | 570.0 | 740.00 | 1350 | ▃▇▆▂▃ |
numeric | calories | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 503.0208333 | 282.2209653 | 50.0 | 287.50 | 460.0 | 740.00 | 1160 | ▅▇▃▃▂ |
numeric | cal_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 338.3018868 | 197.1404795 | 100.0 | 180.00 | 290.0 | 430.00 | 900 | ▇▅▂▁▁ |
numeric | cal_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 165.1041667 | 134.8351414 | 10.0 | 48.75 | 137.5 | 242.50 | 620 | ▇▅▂▁▁ |
numeric | total_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 37.6415094 | 21.9729680 | 11.0 | 20.00 | 32.0 | 48.00 | 100 | ▇▅▂▁▁ |
numeric | total_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 18.4791667 | 14.6092827 | 1.0 | 6.00 | 15.0 | 26.50 | 62 | ▇▃▃▁▁ |
numeric | sat_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 11.4150943 | 8.6673214 | 2.5 | 5.00 | 8.0 | 15.00 | 36 | ▇▂▂▁▁ |
numeric | sat_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 6.1979167 | 5.2417751 | 0.0 | 2.00 | 4.5 | 9.25 | 22 | ▇▃▃▁▁ |
numeric | trans_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.9339623 | 1.2597227 | 0.0 | 0.00 | 0.0 | 2.00 | 4 | ▇▂▂▁▁ |
numeric | trans_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.2187500 | 0.5222043 | 0.0 | 0.00 | 0.0 | 0.00 | 2 | ▇▁▁▁▁ |
numeric | cholesterol | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 86.9811321 | 63.7704690 | 0.0 | 40.00 | 80.0 | 110.00 | 260 | ▇▇▃▁▂ |
numeric | cholesterol | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 61.3020833 | 40.9315526 | 0.0 | 40.00 | 50.0 | 85.00 | 190 | ▅▇▅▁▁ |
numeric | sodium | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1350.7547170 | 665.1340208 | 470.0 | 900.00 | 1250.0 | 1550.00 | 4520 | ▇▆▂▁▁ |
numeric | sodium | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1272.9687500 | 743.6345941 | 65.0 | 697.50 | 1130.0 | 1605.00 | 3540 | ▅▇▃▁▂ |
numeric | total_carb | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 47.2075472 | 21.5463351 | 16.0 | 33.00 | 44.0 | 51.00 | 126 | ▆▇▂▁▁ |
numeric | total_carb | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 54.7187500 | 33.3143570 | 8.0 | 25.75 | 47.0 | 92.00 | 118 | ▇▇▂▆▂ |
numeric | fiber | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 2.6603774 | 1.7752941 | 0.0 | 2.00 | 2.0 | 3.00 | 8 | ▃▇▂▂▁ |
numeric | fiber | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 6.5625000 | 3.2373235 | 3.0 | 4.00 | 5.0 | 10.00 | 16 | ▇▁▃▁▁ |
numeric | sugar | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 6.5283019 | 3.9448300 | 0.0 | 4.00 | 7.0 | 9.00 | 17 | ▃▃▇▂▁ |
numeric | sugar | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 10.0937500 | 5.6084112 | 3.0 | 6.00 | 8.0 | 14.00 | 36 | ▇▃▁▁▁ |
numeric | protein | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 29.1886792 | 14.5325319 | 6.0 | 18.00 | 30.0 | 35.00 | 67 | ▆▆▇▁▂ |
numeric | protein | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 30.3125000 | 16.1442918 | 3.0 | 18.00 | 26.0 | 40.00 | 78 | ▆▇▆▂▁ |
numeric | vit_a | Sonic | 4 | 0.9245283 | NA | NA | NA | NA | NA | 6.9387755 | 5.6767368 | 0.0 | 2.00 | 6.0 | 10.00 | 20 | ▇▃▃▃▁ |
numeric | vit_a | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 22.3854167 | 15.1354375 | 6.0 | 10.00 | 16.0 | 30.00 | 60 | ▇▃▁▁▂ |
numeric | vit_c | Sonic | 4 | 0.9245283 | NA | NA | NA | NA | NA | 5.7551020 | 4.8111442 | 0.0 | 2.00 | 6.0 | 8.00 | 25 | ▇▇▁▁▁ |
numeric | vit_c | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 41.9687500 | 44.0113510 | 4.0 | 20.00 | 40.0 | 50.00 | 400 | ▇▁▁▁▁ |
numeric | calcium | Sonic | 4 | 0.9245283 | NA | NA | NA | NA | NA | 17.2448980 | 12.0701605 | 1.0 | 8.00 | 15.0 | 27.00 | 40 | ▇▆▂▆▂ |
numeric | calcium | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 39.1250000 | 25.1321769 | 4.0 | 20.00 | 35.0 | 60.00 | 100 | ▇▇▆▂▁ |
FastFood %>% filter(!(startsWith(restaurant,"S")==TRUE)) %>% group_by(restaurant) %>% skim() %>% kable() %>%
scroll_box(width = "100%", height = "500px")
skim_type | skim_variable | restaurant | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | item | Arbys | 0 | 1.0000000 | 10 | 39 | 0 | 55 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Burger King | 0 | 1.0000000 | 9 | 63 | 0 | 70 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Chick Fil-A | 0 | 1.0000000 | 12 | 36 | 0 | 27 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Dairy Queen | 0 | 1.0000000 | 7 | 45 | 0 | 42 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Mcdonalds | 0 | 1.0000000 | 5 | 49 | 0 | 57 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Taco Bell | 0 | 1.0000000 | 7 | 46 | 0 | 113 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Arbys | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Burger King | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Chick Fil-A | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Dairy Queen | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Mcdonalds | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Taco Bell | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | calories | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 532.7272727 | 210.3388320 | 70.0 | 360.00 | 550.0 | 690.000 | 1030 | ▃▆▇▇▂ |
numeric | calories | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 608.5714286 | 290.4184174 | 190.0 | 365.00 | 555.0 | 760.000 | 1550 | ▇▇▃▂▁ |
numeric | calories | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 384.4444444 | 220.4947816 | 70.0 | 220.00 | 390.0 | 480.000 | 970 | ▇▇▇▁▂ |
numeric | calories | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 520.2380952 | 259.3376939 | 20.0 | 350.00 | 485.0 | 630.000 | 1260 | ▂▇▆▂▁ |
numeric | calories | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 640.3508772 | 410.6961203 | 140.0 | 380.00 | 540.0 | 740.000 | 2430 | ▇▅▁▁▁ |
numeric | calories | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 443.6521739 | 184.3448829 | 140.0 | 320.00 | 420.0 | 575.000 | 880 | ▆▇▇▃▂ |
numeric | cal_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 237.8363636 | 113.1696144 | 45.0 | 135.00 | 250.0 | 310.000 | 495 | ▆▅▇▃▂ |
numeric | cal_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 333.7571429 | 194.4993898 | 90.0 | 172.50 | 285.0 | 431.500 | 1134 | ▇▅▂▁▁ |
numeric | cal_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 145.3703704 | 102.3572733 | 18.0 | 67.50 | 126.0 | 171.000 | 423 | ▆▇▂▁▁ |
numeric | cal_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 260.4761905 | 156.4850555 | 0.0 | 160.00 | 220.0 | 310.000 | 670 | ▃▇▃▂▁ |
numeric | cal_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 285.6140351 | 220.8992785 | 50.0 | 160.00 | 240.0 | 320.000 | 1270 | ▇▃▁▁▁ |
numeric | cal_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 188.0000000 | 84.8109352 | 35.0 | 120.00 | 180.0 | 250.000 | 380 | ▆▇▆▅▃ |
numeric | total_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 26.9818182 | 13.2448325 | 5.0 | 15.50 | 28.0 | 35.000 | 59 | ▅▅▇▂▂ |
numeric | total_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 36.8142857 | 21.2434425 | 10.0 | 19.25 | 31.5 | 48.000 | 126 | ▇▅▂▁▁ |
numeric | total_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 16.1481481 | 11.3771150 | 2.0 | 7.50 | 14.0 | 19.000 | 47 | ▆▇▂▁▁ |
numeric | total_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 28.8571429 | 17.5187306 | 0.0 | 18.00 | 24.5 | 34.750 | 75 | ▃▇▃▂▁ |
numeric | total_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 31.8070175 | 24.5156208 | 5.0 | 18.00 | 27.0 | 36.000 | 141 | ▇▃▁▁▁ |
numeric | total_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 20.8956522 | 9.4082587 | 4.0 | 13.00 | 20.0 | 28.000 | 42 | ▅▇▅▅▃ |
numeric | sat_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 7.9727273 | 4.1626850 | 1.5 | 4.50 | 7.0 | 11.000 | 17 | ▇▅▅▅▃ |
numeric | sat_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 11.1500000 | 8.7676737 | 2.0 | 5.00 | 8.0 | 13.750 | 47 | ▇▂▂▁▁ |
numeric | sat_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 4.1111111 | 3.9034830 | 0.0 | 1.50 | 3.0 | 4.750 | 16 | ▇▂▂▁▁ |
numeric | sat_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 10.4404762 | 8.2522742 | 0.0 | 5.00 | 9.0 | 12.500 | 43 | ▇▆▂▁▁ |
numeric | sat_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 8.2894737 | 5.5347501 | 0.5 | 4.50 | 7.0 | 11.000 | 27 | ▇▇▃▁▁ |
numeric | sat_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 6.5913043 | 2.9813621 | 1.0 | 4.00 | 6.0 | 9.000 | 14 | ▃▇▃▅▂ |
numeric | trans_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.4181818 | 0.5913233 | 0.0 | 0.00 | 0.0 | 1.000 | 2 | ▇▂▂▁▁ |
numeric | trans_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.8642857 | 1.3457432 | 0.0 | 0.00 | 0.0 | 1.375 | 8 | ▇▂▁▁▁ |
numeric | trans_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.0370370 | 0.1924501 | 0.0 | 0.00 | 0.0 | 0.000 | 1 | ▇▁▁▁▁ |
numeric | trans_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.6785714 | 0.7141550 | 0.0 | 0.00 | 1.0 | 1.000 | 2 | ▇▁▇▁▂ |
numeric | trans_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.4649123 | 0.7249363 | 0.0 | 0.00 | 0.0 | 1.000 | 3 | ▇▁▁▁▁ |
numeric | trans_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.2565217 | 0.3993702 | 0.0 | 0.00 | 0.0 | 0.500 | 1 | ▇▁▂▁▂ |
numeric | cholesterol | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 70.4545455 | 34.3089548 | 15.0 | 45.00 | 65.0 | 90.000 | 155 | ▆▇▇▃▂ |
numeric | cholesterol | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 100.8571429 | 107.3223893 | 5.0 | 40.00 | 85.0 | 115.000 | 805 | ▇▁▁▁▁ |
numeric | cholesterol | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 79.0740741 | 47.3131352 | 25.0 | 55.00 | 70.0 | 87.500 | 285 | ▇▅▁▁▁ |
numeric | cholesterol | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 71.5476190 | 43.7493985 | 0.0 | 41.25 | 60.0 | 100.000 | 180 | ▃▇▃▂▂ |
numeric | cholesterol | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 109.7368421 | 79.5322321 | 0.0 | 70.00 | 95.0 | 125.000 | 475 | ▇▃▁▁▁ |
numeric | cholesterol | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 39.0434783 | 19.1931052 | 0.0 | 25.00 | 35.0 | 55.000 | 85 | ▂▇▇▃▂ |
numeric | sodium | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1515.2727273 | 663.6650610 | 100.0 | 960.00 | 1480.0 | 2020.000 | 3350 | ▂▇▇▃▁ |
numeric | sodium | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1223.5714286 | 499.8841481 | 310.0 | 850.00 | 1150.0 | 1635.000 | 2310 | ▅▇▅▆▂ |
numeric | sodium | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1151.4814815 | 726.9202882 | 220.0 | 700.00 | 1000.0 | 1405.000 | 3660 | ▇▇▂▁▁ |
numeric | sodium | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1181.7857143 | 609.9398425 | 15.0 | 847.50 | 1030.0 | 1362.500 | 3500 | ▂▇▂▁▁ |
numeric | sodium | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1437.8947368 | 1036.1721052 | 20.0 | 870.00 | 1120.0 | 1780.000 | 6080 | ▇▅▁▁▁ |
numeric | sodium | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 1013.9130435 | 474.0543600 | 290.0 | 615.00 | 960.0 | 1300.000 | 2260 | ▇▇▆▂▂ |
numeric | total_carb | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 44.8727273 | 19.0963003 | 4.0 | 34.00 | 46.0 | 54.000 | 83 | ▂▃▇▅▂ |
numeric | total_carb | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 39.3142857 | 15.5559233 | 7.0 | 28.00 | 41.0 | 52.000 | 69 | ▃▅▅▇▃ |
numeric | total_carb | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 28.6296296 | 20.4265064 | 1.0 | 8.00 | 29.0 | 42.500 | 70 | ▇▂▆▃▂ |
numeric | total_carb | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 38.6904762 | 23.7296646 | 0.0 | 25.25 | 34.0 | 44.750 | 121 | ▃▇▁▁▁ |
numeric | total_carb | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 48.7894737 | 26.4424826 | 9.0 | 32.00 | 46.0 | 62.000 | 156 | ▆▇▂▁▁ |
numeric | total_carb | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 46.6347826 | 22.5183475 | 12.0 | 29.00 | 44.0 | 64.000 | 107 | ▇▇▇▃▂ |
numeric | fiber | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 2.7090909 | 1.4099216 | 1.0 | 2.00 | 2.0 | 4.000 | 6 | ▇▂▂▁▁ |
numeric | fiber | Burger King | 10 | 0.8571429 | NA | NA | NA | NA | NA | 2.3833333 | 1.3541107 | 0.0 | 1.75 | 2.0 | 3.000 | 7 | ▅▇▅▂▁ |
numeric | fiber | Chick Fil-A | 2 | 0.9259259 | NA | NA | NA | NA | NA | 2.3200000 | 3.0512293 | 0.0 | 1.00 | 1.0 | 3.000 | 15 | ▇▂▁▁▁ |
numeric | fiber | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 2.8333333 | 2.9210478 | 0.0 | 1.00 | 2.0 | 3.000 | 12 | ▇▂▁▁▁ |
numeric | fiber | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 3.2280702 | 1.6585013 | 0.0 | 2.00 | 3.0 | 4.000 | 8 | ▂▇▃▃▁ |
numeric | fiber | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 5.7130435 | 3.0572468 | 1.0 | 3.00 | 5.0 | 7.000 | 17 | ▇▆▃▁▁ |
numeric | sugar | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 7.5636364 | 5.8587182 | 0.0 | 3.50 | 6.0 | 9.000 | 23 | ▆▇▁▂▁ |
numeric | sugar | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 8.1857143 | 6.1862233 | 0.0 | 6.00 | 7.5 | 10.000 | 37 | ▇▇▁▁▁ |
numeric | sugar | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 4.1481481 | 3.6658896 | 0.0 | 1.00 | 4.0 | 7.000 | 12 | ▇▃▅▂▂ |
numeric | sugar | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 6.3571429 | 5.0258912 | 0.0 | 3.00 | 6.0 | 8.750 | 30 | ▇▅▁▁▁ |
numeric | sugar | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 11.0701754 | 13.3454910 | 0.0 | 4.00 | 9.0 | 13.000 | 87 | ▇▁▁▁▁ |
numeric | sugar | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 3.7043478 | 1.8870469 | 1.0 | 2.00 | 4.0 | 5.000 | 8 | ▇▅▇▂▂ |
numeric | protein | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 29.2545455 | 12.3861006 | 5.0 | 20.00 | 29.0 | 38.000 | 62 | ▅▆▇▃▁ |
numeric | protein | Burger King | 1 | 0.9857143 | NA | NA | NA | NA | NA | 30.0144928 | 19.4690499 | 5.0 | 16.00 | 29.0 | 36.000 | 134 | ▇▅▁▁▁ |
numeric | protein | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 31.7037037 | 16.9270262 | 11.0 | 23.50 | 29.0 | 37.000 | 103 | ▇▆▁▁▁ |
numeric | protein | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 24.8333333 | 11.5440126 | 1.0 | 17.00 | 23.0 | 34.000 | 49 | ▂▇▅▅▃ |
numeric | protein | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 40.2982456 | 29.4793904 | 7.0 | 25.00 | 33.0 | 46.000 | 186 | ▇▂▁▁▁ |
numeric | protein | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 17.4173913 | 7.1352628 | 6.0 | 12.00 | 16.0 | 22.000 | 37 | ▇▇▆▃▂ |
numeric | vit_a | Arbys | 30 | 0.4545455 | NA | NA | NA | NA | NA | 12.5600000 | 16.8252786 | 0.0 | 2.00 | 6.0 | 20.000 | 60 | ▇▂▁▁▁ |
numeric | vit_a | Burger King | 70 | 0.0000000 | NA | NA | NA | NA | NA | NaN | NA | NA | NA | NA | NA | NA | |
numeric | vit_a | Chick Fil-A | 6 | 0.7777778 | NA | NA | NA | NA | NA | 12.6190476 | 18.5188450 | 0.0 | 0.00 | 2.0 | 30.000 | 60 | ▇▁▃▁▁ |
numeric | vit_a | Dairy Queen | 15 | 0.6428571 | NA | NA | NA | NA | NA | 14.0000000 | 11.0069908 | 0.0 | 9.00 | 10.0 | 20.000 | 50 | ▇▃▂▁▁ |
numeric | vit_a | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 33.7192982 | 64.1598880 | 0.0 | 2.00 | 6.0 | 20.000 | 180 | ▇▁▁▁▂ |
numeric | vit_a | Taco Bell | 89 | 0.2260870 | NA | NA | NA | NA | NA | 11.8461538 | 3.9364177 | 6.0 | 8.50 | 12.5 | 15.000 | 20 | ▅▃▁▇▁ |
numeric | vit_c | Arbys | 30 | 0.4545455 | NA | NA | NA | NA | NA | 8.4000000 | 6.3442888 | 0.0 | 2.00 | 10.0 | 10.000 | 20 | ▇▃▇▂▃ |
numeric | vit_c | Burger King | 70 | 0.0000000 | NA | NA | NA | NA | NA | NaN | NA | NA | NA | NA | NA | NA | |
numeric | vit_c | Chick Fil-A | 2 | 0.9259259 | NA | NA | NA | NA | NA | 14.0800000 | 15.2613892 | 0.0 | 2.00 | 8.0 | 20.000 | 50 | ▇▁▁▂▁ |
numeric | vit_c | Dairy Queen | 15 | 0.6428571 | NA | NA | NA | NA | NA | 4.3703704 | 5.8713656 | 0.0 | 0.00 | 4.0 | 6.000 | 30 | ▇▁▁▁▁ |
numeric | vit_c | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 18.2982456 | 18.0771807 | 0.0 | 2.00 | 15.0 | 25.000 | 70 | ▇▆▂▁▁ |
numeric | vit_c | Taco Bell | 89 | 0.2260870 | NA | NA | NA | NA | NA | 4.5384615 | 2.4368959 | 0.0 | 2.00 | 4.0 | 6.000 | 10 | ▇▇▇▃▁ |
numeric | calcium | Arbys | 30 | 0.4545455 | NA | NA | NA | NA | NA | 17.3600000 | 12.7111500 | 2.0 | 8.00 | 15.0 | 25.000 | 45 | ▇▃▃▂▂ |
numeric | calcium | Burger King | 70 | 0.0000000 | NA | NA | NA | NA | NA | NaN | NA | NA | NA | NA | NA | NA | |
numeric | calcium | Chick Fil-A | 2 | 0.9259259 | NA | NA | NA | NA | NA | 11.3200000 | 10.4949194 | 0.0 | 2.00 | 8.0 | 20.000 | 35 | ▇▂▃▂▁ |
numeric | calcium | Dairy Queen | 15 | 0.6428571 | NA | NA | NA | NA | NA | 16.4074074 | 19.0167118 | 0.0 | 6.00 | 10.0 | 20.000 | 100 | ▇▂▁▁▁ |
numeric | calcium | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 20.5964912 | 37.9274965 | 0.0 | 6.00 | 15.0 | 20.000 | 290 | ▇▁▁▁▁ |
numeric | calcium | Taco Bell | 89 | 0.2260870 | NA | NA | NA | NA | NA | 24.8076923 | 11.3314403 | 6.0 | 15.00 | 25.0 | 35.000 | 45 | ▃▆▂▇▂ |
select()
select
selects columns according to some set of names/conditions.
select
selects columns according to some set of names/conditions.
# A tibble: 515 × 3
restaurant vit_a vit_c
<chr> <dbl> <dbl>
1 Mcdonalds 4 20
2 Mcdonalds 6 20
3 Mcdonalds 10 20
4 Mcdonalds 6 25
5 Mcdonalds 6 20
6 Mcdonalds 10 2
7 Mcdonalds 10 2
8 Mcdonalds 0 4
9 Mcdonalds 20 4
10 Mcdonalds 20 6
# … with 505 more rows
select
selects columns according to some set of names/conditions. Negative selection can occur.
# A tibble: 515 × 16
item calor…¹ cal_fat total…² sat_fat trans…³ chole…⁴ sodium total…⁵ fiber
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Artisan… 380 60 7 2 0 95 1110 44 3
2 Single … 840 410 45 17 1.5 130 1580 62 2
3 Double … 1130 600 67 27 3 220 1920 63 3
4 Grilled… 750 280 31 10 0.5 155 1940 62 2
5 Crispy … 920 410 45 12 0.5 120 1980 81 4
6 Big Mac 540 250 28 10 1 80 950 46 3
7 Cheeseb… 300 100 12 5 0.5 40 680 33 2
8 Classic… 510 210 24 4 0 65 1040 49 3
9 Double … 430 190 21 11 1 85 1040 35 2
10 Double … 770 400 45 21 2.5 175 1290 42 3
# … with 505 more rows, 6 more variables: sugar <dbl>, protein <dbl>,
# vit_a <dbl>, vit_c <dbl>, calcium <dbl>, salad <chr>, and abbreviated
# variable names ¹calories, ²total_fat, ³trans_fat, ⁴cholesterol, ⁵total_carb
mutate()
mutate()
and transmute()
are the core method for adding variables [columns] to existing data. The key difference is that mutate()
retains existing variables while transmute()
drops them. Let’s see it for sodium, rescaled to grams.
mutate will keep all columns.
FastFood %>%
mutate(Sodium.Grams = sodium / 1000) %>%
select(restaurant,Sodium.Grams,sodium,everything())
# A tibble: 515 × 18
restau…¹ Sodiu…² sodium item calor…³ cal_fat total…⁴ sat_fat trans…⁵ chole…⁶
<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Mcdonal… 1.11 1110 Arti… 380 60 7 2 0 95
2 Mcdonal… 1.58 1580 Sing… 840 410 45 17 1.5 130
3 Mcdonal… 1.92 1920 Doub… 1130 600 67 27 3 220
4 Mcdonal… 1.94 1940 Gril… 750 280 31 10 0.5 155
5 Mcdonal… 1.98 1980 Cris… 920 410 45 12 0.5 120
6 Mcdonal… 0.95 950 Big … 540 250 28 10 1 80
7 Mcdonal… 0.68 680 Chee… 300 100 12 5 0.5 40
8 Mcdonal… 1.04 1040 Clas… 510 210 24 4 0 65
9 Mcdonal… 1.04 1040 Doub… 430 190 21 11 1 85
10 Mcdonal… 1.29 1290 Doub… 770 400 45 21 2.5 175
# … with 505 more rows, 8 more variables: total_carb <dbl>, fiber <dbl>,
# sugar <dbl>, protein <dbl>, vit_a <dbl>, vit_c <dbl>, calcium <dbl>,
# salad <chr>, and abbreviated variable names ¹restaurant, ²Sodium.Grams,
# ³calories, ⁴total_fat, ⁵trans_fat, ⁶cholesterol
transmute()
transmute will only keep the called columns.
To make these mutate()
a part of the data, we assign it a new name or reassign it.
mutate()
and transmute()
can be fancyVirtually all of these functions can embed other functions. We can use mutate with functions to do pretty fancy things. Let me isolate the chicken items.
group_by()
group_by
group_by
is a core tidyverse
operator for repeating something by groups. By itself, it simply splits a data object according to the grouping variable(s).
But that is exactly what a pivot table does.
FastFood %>% group_by(restaurant) %>% skim() %>% kable() %>%
scroll_box(width = "100%", height = "500px")
skim_type | skim_variable | restaurant | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | item | Arbys | 0 | 1.0000000 | 10 | 39 | 0 | 55 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Burger King | 0 | 1.0000000 | 9 | 63 | 0 | 70 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Chick Fil-A | 0 | 1.0000000 | 12 | 36 | 0 | 27 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Dairy Queen | 0 | 1.0000000 | 7 | 45 | 0 | 42 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Mcdonalds | 0 | 1.0000000 | 5 | 49 | 0 | 57 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Sonic | 0 | 1.0000000 | 8 | 48 | 0 | 53 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Subway | 0 | 1.0000000 | 7 | 58 | 0 | 96 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | item | Taco Bell | 0 | 1.0000000 | 7 | 46 | 0 | 113 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Arbys | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Burger King | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Chick Fil-A | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Dairy Queen | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Mcdonalds | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Sonic | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Subway | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | salad | Taco Bell | 0 | 1.0000000 | 5 | 5 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.2363636 | FAL: 42, TRU: 13 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.4857143 | FAL: 36, TRU: 34 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.9259259 | TRU: 25, FAL: 2 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.3095238 | FAL: 29, TRU: 13 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.6491228 | TRU: 37, FAL: 20 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.4150943 | FAL: 31, TRU: 22 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.1666667 | FAL: 80, TRU: 16 | NA | NA | NA | NA | NA | NA | NA | NA |
logical | Chicken | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | 0.2000000 | FAL: 92, TRU: 23 | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | calories | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 532.7272727 | 210.3388320 | 70.000 | 360.0000 | 550.00 | 690.0000 | 1030.00 | ▃▆▇▇▂ |
numeric | calories | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 608.5714286 | 290.4184174 | 190.000 | 365.0000 | 555.00 | 760.0000 | 1550.00 | ▇▇▃▂▁ |
numeric | calories | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 384.4444444 | 220.4947816 | 70.000 | 220.0000 | 390.00 | 480.0000 | 970.00 | ▇▇▇▁▂ |
numeric | calories | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 520.2380952 | 259.3376939 | 20.000 | 350.0000 | 485.00 | 630.0000 | 1260.00 | ▂▇▆▂▁ |
numeric | calories | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 640.3508772 | 410.6961203 | 140.000 | 380.0000 | 540.00 | 740.0000 | 2430.00 | ▇▅▁▁▁ |
numeric | calories | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 631.6981132 | 300.8816267 | 100.000 | 410.0000 | 570.00 | 740.0000 | 1350.00 | ▃▇▆▂▃ |
numeric | calories | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 503.0208333 | 282.2209653 | 50.000 | 287.5000 | 460.00 | 740.0000 | 1160.00 | ▅▇▃▃▂ |
numeric | calories | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 443.6521739 | 184.3448829 | 140.000 | 320.0000 | 420.00 | 575.0000 | 880.00 | ▆▇▇▃▂ |
numeric | cal_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 237.8363636 | 113.1696144 | 45.000 | 135.0000 | 250.00 | 310.0000 | 495.00 | ▆▅▇▃▂ |
numeric | cal_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 333.7571429 | 194.4993898 | 90.000 | 172.5000 | 285.00 | 431.5000 | 1134.00 | ▇▅▂▁▁ |
numeric | cal_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 145.3703704 | 102.3572733 | 18.000 | 67.5000 | 126.00 | 171.0000 | 423.00 | ▆▇▂▁▁ |
numeric | cal_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 260.4761905 | 156.4850555 | 0.000 | 160.0000 | 220.00 | 310.0000 | 670.00 | ▃▇▃▂▁ |
numeric | cal_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 285.6140351 | 220.8992785 | 50.000 | 160.0000 | 240.00 | 320.0000 | 1270.00 | ▇▃▁▁▁ |
numeric | cal_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 338.3018868 | 197.1404795 | 100.000 | 180.0000 | 290.00 | 430.0000 | 900.00 | ▇▅▂▁▁ |
numeric | cal_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 165.1041667 | 134.8351414 | 10.000 | 48.7500 | 137.50 | 242.5000 | 620.00 | ▇▅▂▁▁ |
numeric | cal_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 188.0000000 | 84.8109352 | 35.000 | 120.0000 | 180.00 | 250.0000 | 380.00 | ▆▇▆▅▃ |
numeric | total_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 26.9818182 | 13.2448325 | 5.000 | 15.5000 | 28.00 | 35.0000 | 59.00 | ▅▅▇▂▂ |
numeric | total_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 36.8142857 | 21.2434425 | 10.000 | 19.2500 | 31.50 | 48.0000 | 126.00 | ▇▅▂▁▁ |
numeric | total_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 16.1481481 | 11.3771150 | 2.000 | 7.5000 | 14.00 | 19.0000 | 47.00 | ▆▇▂▁▁ |
numeric | total_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 28.8571429 | 17.5187306 | 0.000 | 18.0000 | 24.50 | 34.7500 | 75.00 | ▃▇▃▂▁ |
numeric | total_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 31.8070175 | 24.5156208 | 5.000 | 18.0000 | 27.00 | 36.0000 | 141.00 | ▇▃▁▁▁ |
numeric | total_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 37.6415094 | 21.9729680 | 11.000 | 20.0000 | 32.00 | 48.0000 | 100.00 | ▇▅▂▁▁ |
numeric | total_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 18.4791667 | 14.6092827 | 1.000 | 6.0000 | 15.00 | 26.5000 | 62.00 | ▇▃▃▁▁ |
numeric | total_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 20.8956522 | 9.4082587 | 4.000 | 13.0000 | 20.00 | 28.0000 | 42.00 | ▅▇▅▅▃ |
numeric | sat_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.9727273 | 4.1626850 | 1.500 | 4.5000 | 7.00 | 11.0000 | 17.00 | ▇▅▅▅▃ |
numeric | sat_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 11.1500000 | 8.7676737 | 2.000 | 5.0000 | 8.00 | 13.7500 | 47.00 | ▇▂▂▁▁ |
numeric | sat_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.1111111 | 3.9034830 | 0.000 | 1.5000 | 3.00 | 4.7500 | 16.00 | ▇▂▂▁▁ |
numeric | sat_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 10.4404762 | 8.2522742 | 0.000 | 5.0000 | 9.00 | 12.5000 | 43.00 | ▇▆▂▁▁ |
numeric | sat_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.2894737 | 5.5347501 | 0.500 | 4.5000 | 7.00 | 11.0000 | 27.00 | ▇▇▃▁▁ |
numeric | sat_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 11.4150943 | 8.6673214 | 2.500 | 5.0000 | 8.00 | 15.0000 | 36.00 | ▇▂▂▁▁ |
numeric | sat_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 6.1979167 | 5.2417751 | 0.000 | 2.0000 | 4.50 | 9.2500 | 22.00 | ▇▃▃▁▁ |
numeric | sat_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 6.5913043 | 2.9813621 | 1.000 | 4.0000 | 6.00 | 9.0000 | 14.00 | ▃▇▃▅▂ |
numeric | trans_fat | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.4181818 | 0.5913233 | 0.000 | 0.0000 | 0.00 | 1.0000 | 2.00 | ▇▂▂▁▁ |
numeric | trans_fat | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.8642857 | 1.3457432 | 0.000 | 0.0000 | 0.00 | 1.3750 | 8.00 | ▇▂▁▁▁ |
numeric | trans_fat | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.0370370 | 0.1924501 | 0.000 | 0.0000 | 0.00 | 0.0000 | 1.00 | ▇▁▁▁▁ |
numeric | trans_fat | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.6785714 | 0.7141550 | 0.000 | 0.0000 | 1.00 | 1.0000 | 2.00 | ▇▁▇▁▂ |
numeric | trans_fat | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.4649123 | 0.7249363 | 0.000 | 0.0000 | 0.00 | 1.0000 | 3.00 | ▇▁▁▁▁ |
numeric | trans_fat | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.9339623 | 1.2597227 | 0.000 | 0.0000 | 0.00 | 2.0000 | 4.00 | ▇▂▂▁▁ |
numeric | trans_fat | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.2187500 | 0.5222043 | 0.000 | 0.0000 | 0.00 | 0.0000 | 2.00 | ▇▁▁▁▁ |
numeric | trans_fat | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 0.2565217 | 0.3993702 | 0.000 | 0.0000 | 0.00 | 0.5000 | 1.00 | ▇▁▂▁▂ |
numeric | cholesterol | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 70.4545455 | 34.3089548 | 15.000 | 45.0000 | 65.00 | 90.0000 | 155.00 | ▆▇▇▃▂ |
numeric | cholesterol | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 100.8571429 | 107.3223893 | 5.000 | 40.0000 | 85.00 | 115.0000 | 805.00 | ▇▁▁▁▁ |
numeric | cholesterol | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 79.0740741 | 47.3131352 | 25.000 | 55.0000 | 70.00 | 87.5000 | 285.00 | ▇▅▁▁▁ |
numeric | cholesterol | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 71.5476190 | 43.7493985 | 0.000 | 41.2500 | 60.00 | 100.0000 | 180.00 | ▃▇▃▂▂ |
numeric | cholesterol | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 109.7368421 | 79.5322321 | 0.000 | 70.0000 | 95.00 | 125.0000 | 475.00 | ▇▃▁▁▁ |
numeric | cholesterol | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 86.9811321 | 63.7704690 | 0.000 | 40.0000 | 80.00 | 110.0000 | 260.00 | ▇▇▃▁▂ |
numeric | cholesterol | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 61.3020833 | 40.9315526 | 0.000 | 40.0000 | 50.00 | 85.0000 | 190.00 | ▅▇▅▁▁ |
numeric | cholesterol | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 39.0434783 | 19.1931052 | 0.000 | 25.0000 | 35.00 | 55.0000 | 85.00 | ▂▇▇▃▂ |
numeric | sodium | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1515.2727273 | 663.6650610 | 100.000 | 960.0000 | 1480.00 | 2020.0000 | 3350.00 | ▂▇▇▃▁ |
numeric | sodium | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1223.5714286 | 499.8841481 | 310.000 | 850.0000 | 1150.00 | 1635.0000 | 2310.00 | ▅▇▅▆▂ |
numeric | sodium | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1151.4814815 | 726.9202882 | 220.000 | 700.0000 | 1000.00 | 1405.0000 | 3660.00 | ▇▇▂▁▁ |
numeric | sodium | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1181.7857143 | 609.9398425 | 15.000 | 847.5000 | 1030.00 | 1362.5000 | 3500.00 | ▂▇▂▁▁ |
numeric | sodium | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1437.8947368 | 1036.1721052 | 20.000 | 870.0000 | 1120.00 | 1780.0000 | 6080.00 | ▇▅▁▁▁ |
numeric | sodium | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1350.7547170 | 665.1340208 | 470.000 | 900.0000 | 1250.00 | 1550.0000 | 4520.00 | ▇▆▂▁▁ |
numeric | sodium | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1272.9687500 | 743.6345941 | 65.000 | 697.5000 | 1130.00 | 1605.0000 | 3540.00 | ▅▇▃▁▂ |
numeric | sodium | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1013.9130435 | 474.0543600 | 290.000 | 615.0000 | 960.00 | 1300.0000 | 2260.00 | ▇▇▆▂▂ |
numeric | total_carb | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 44.8727273 | 19.0963003 | 4.000 | 34.0000 | 46.00 | 54.0000 | 83.00 | ▂▃▇▅▂ |
numeric | total_carb | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 39.3142857 | 15.5559233 | 7.000 | 28.0000 | 41.00 | 52.0000 | 69.00 | ▃▅▅▇▃ |
numeric | total_carb | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 28.6296296 | 20.4265064 | 1.000 | 8.0000 | 29.00 | 42.5000 | 70.00 | ▇▂▆▃▂ |
numeric | total_carb | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 38.6904762 | 23.7296646 | 0.000 | 25.2500 | 34.00 | 44.7500 | 121.00 | ▃▇▁▁▁ |
numeric | total_carb | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 48.7894737 | 26.4424826 | 9.000 | 32.0000 | 46.00 | 62.0000 | 156.00 | ▆▇▂▁▁ |
numeric | total_carb | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 47.2075472 | 21.5463351 | 16.000 | 33.0000 | 44.00 | 51.0000 | 126.00 | ▆▇▂▁▁ |
numeric | total_carb | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 54.7187500 | 33.3143570 | 8.000 | 25.7500 | 47.00 | 92.0000 | 118.00 | ▇▇▂▆▂ |
numeric | total_carb | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 46.6347826 | 22.5183475 | 12.000 | 29.0000 | 44.00 | 64.0000 | 107.00 | ▇▇▇▃▂ |
numeric | fiber | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.7090909 | 1.4099216 | 1.000 | 2.0000 | 2.00 | 4.0000 | 6.00 | ▇▂▂▁▁ |
numeric | fiber | Burger King | 10 | 0.8571429 | NA | NA | NA | NA | NA | NA | NA | 2.3833333 | 1.3541107 | 0.000 | 1.7500 | 2.00 | 3.0000 | 7.00 | ▅▇▅▂▁ |
numeric | fiber | Chick Fil-A | 2 | 0.9259259 | NA | NA | NA | NA | NA | NA | NA | 2.3200000 | 3.0512293 | 0.000 | 1.0000 | 1.00 | 3.0000 | 15.00 | ▇▂▁▁▁ |
numeric | fiber | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.8333333 | 2.9210478 | 0.000 | 1.0000 | 2.00 | 3.0000 | 12.00 | ▇▂▁▁▁ |
numeric | fiber | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 3.2280702 | 1.6585013 | 0.000 | 2.0000 | 3.00 | 4.0000 | 8.00 | ▂▇▃▃▁ |
numeric | fiber | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.6603774 | 1.7752941 | 0.000 | 2.0000 | 2.00 | 3.0000 | 8.00 | ▃▇▂▂▁ |
numeric | fiber | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 6.5625000 | 3.2373235 | 3.000 | 4.0000 | 5.00 | 10.0000 | 16.00 | ▇▁▃▁▁ |
numeric | fiber | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.7130435 | 3.0572468 | 1.000 | 3.0000 | 5.00 | 7.0000 | 17.00 | ▇▆▃▁▁ |
numeric | sugar | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.5636364 | 5.8587182 | 0.000 | 3.5000 | 6.00 | 9.0000 | 23.00 | ▆▇▁▂▁ |
numeric | sugar | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.1857143 | 6.1862233 | 0.000 | 6.0000 | 7.50 | 10.0000 | 37.00 | ▇▇▁▁▁ |
numeric | sugar | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.1481481 | 3.6658896 | 0.000 | 1.0000 | 4.00 | 7.0000 | 12.00 | ▇▃▅▂▂ |
numeric | sugar | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 6.3571429 | 5.0258912 | 0.000 | 3.0000 | 6.00 | 8.7500 | 30.00 | ▇▅▁▁▁ |
numeric | sugar | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 11.0701754 | 13.3454910 | 0.000 | 4.0000 | 9.00 | 13.0000 | 87.00 | ▇▁▁▁▁ |
numeric | sugar | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 6.5283019 | 3.9448300 | 0.000 | 4.0000 | 7.00 | 9.0000 | 17.00 | ▃▃▇▂▁ |
numeric | sugar | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 10.0937500 | 5.6084112 | 3.000 | 6.0000 | 8.00 | 14.0000 | 36.00 | ▇▃▁▁▁ |
numeric | sugar | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 3.7043478 | 1.8870469 | 1.000 | 2.0000 | 4.00 | 5.0000 | 8.00 | ▇▅▇▂▂ |
numeric | protein | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 29.2545455 | 12.3861006 | 5.000 | 20.0000 | 29.00 | 38.0000 | 62.00 | ▅▆▇▃▁ |
numeric | protein | Burger King | 1 | 0.9857143 | NA | NA | NA | NA | NA | NA | NA | 30.0144928 | 19.4690499 | 5.000 | 16.0000 | 29.00 | 36.0000 | 134.00 | ▇▅▁▁▁ |
numeric | protein | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 31.7037037 | 16.9270262 | 11.000 | 23.5000 | 29.00 | 37.0000 | 103.00 | ▇▆▁▁▁ |
numeric | protein | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 24.8333333 | 11.5440126 | 1.000 | 17.0000 | 23.00 | 34.0000 | 49.00 | ▂▇▅▅▃ |
numeric | protein | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 40.2982456 | 29.4793904 | 7.000 | 25.0000 | 33.00 | 46.0000 | 186.00 | ▇▂▁▁▁ |
numeric | protein | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 29.1886792 | 14.5325319 | 6.000 | 18.0000 | 30.00 | 35.0000 | 67.00 | ▆▆▇▁▂ |
numeric | protein | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 30.3125000 | 16.1442918 | 3.000 | 18.0000 | 26.00 | 40.0000 | 78.00 | ▆▇▆▂▁ |
numeric | protein | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 17.4173913 | 7.1352628 | 6.000 | 12.0000 | 16.00 | 22.0000 | 37.00 | ▇▇▆▃▂ |
numeric | vit_a | Arbys | 30 | 0.4545455 | NA | NA | NA | NA | NA | NA | NA | 12.5600000 | 16.8252786 | 0.000 | 2.0000 | 6.00 | 20.0000 | 60.00 | ▇▂▁▁▁ |
numeric | vit_a | Burger King | 70 | 0.0000000 | NA | NA | NA | NA | NA | NA | NA | NaN | NA | NA | NA | NA | NA | NA | |
numeric | vit_a | Chick Fil-A | 6 | 0.7777778 | NA | NA | NA | NA | NA | NA | NA | 12.6190476 | 18.5188450 | 0.000 | 0.0000 | 2.00 | 30.0000 | 60.00 | ▇▁▃▁▁ |
numeric | vit_a | Dairy Queen | 15 | 0.6428571 | NA | NA | NA | NA | NA | NA | NA | 14.0000000 | 11.0069908 | 0.000 | 9.0000 | 10.00 | 20.0000 | 50.00 | ▇▃▂▁▁ |
numeric | vit_a | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 33.7192982 | 64.1598880 | 0.000 | 2.0000 | 6.00 | 20.0000 | 180.00 | ▇▁▁▁▂ |
numeric | vit_a | Sonic | 4 | 0.9245283 | NA | NA | NA | NA | NA | NA | NA | 6.9387755 | 5.6767368 | 0.000 | 2.0000 | 6.00 | 10.0000 | 20.00 | ▇▃▃▃▁ |
numeric | vit_a | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 22.3854167 | 15.1354375 | 6.000 | 10.0000 | 16.00 | 30.0000 | 60.00 | ▇▃▁▁▂ |
numeric | vit_a | Taco Bell | 89 | 0.2260870 | NA | NA | NA | NA | NA | NA | NA | 11.8461538 | 3.9364177 | 6.000 | 8.5000 | 12.50 | 15.0000 | 20.00 | ▅▃▁▇▁ |
numeric | vit_c | Arbys | 30 | 0.4545455 | NA | NA | NA | NA | NA | NA | NA | 8.4000000 | 6.3442888 | 0.000 | 2.0000 | 10.00 | 10.0000 | 20.00 | ▇▃▇▂▃ |
numeric | vit_c | Burger King | 70 | 0.0000000 | NA | NA | NA | NA | NA | NA | NA | NaN | NA | NA | NA | NA | NA | NA | |
numeric | vit_c | Chick Fil-A | 2 | 0.9259259 | NA | NA | NA | NA | NA | NA | NA | 14.0800000 | 15.2613892 | 0.000 | 2.0000 | 8.00 | 20.0000 | 50.00 | ▇▁▁▂▁ |
numeric | vit_c | Dairy Queen | 15 | 0.6428571 | NA | NA | NA | NA | NA | NA | NA | 4.3703704 | 5.8713656 | 0.000 | 0.0000 | 4.00 | 6.0000 | 30.00 | ▇▁▁▁▁ |
numeric | vit_c | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 18.2982456 | 18.0771807 | 0.000 | 2.0000 | 15.00 | 25.0000 | 70.00 | ▇▆▂▁▁ |
numeric | vit_c | Sonic | 4 | 0.9245283 | NA | NA | NA | NA | NA | NA | NA | 5.7551020 | 4.8111442 | 0.000 | 2.0000 | 6.00 | 8.0000 | 25.00 | ▇▇▁▁▁ |
numeric | vit_c | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 41.9687500 | 44.0113510 | 4.000 | 20.0000 | 40.00 | 50.0000 | 400.00 | ▇▁▁▁▁ |
numeric | vit_c | Taco Bell | 89 | 0.2260870 | NA | NA | NA | NA | NA | NA | NA | 4.5384615 | 2.4368959 | 0.000 | 2.0000 | 4.00 | 6.0000 | 10.00 | ▇▇▇▃▁ |
numeric | calcium | Arbys | 30 | 0.4545455 | NA | NA | NA | NA | NA | NA | NA | 17.3600000 | 12.7111500 | 2.000 | 8.0000 | 15.00 | 25.0000 | 45.00 | ▇▃▃▂▂ |
numeric | calcium | Burger King | 70 | 0.0000000 | NA | NA | NA | NA | NA | NA | NA | NaN | NA | NA | NA | NA | NA | NA | |
numeric | calcium | Chick Fil-A | 2 | 0.9259259 | NA | NA | NA | NA | NA | NA | NA | 11.3200000 | 10.4949194 | 0.000 | 2.0000 | 8.00 | 20.0000 | 35.00 | ▇▂▃▂▁ |
numeric | calcium | Dairy Queen | 15 | 0.6428571 | NA | NA | NA | NA | NA | NA | NA | 16.4074074 | 19.0167118 | 0.000 | 6.0000 | 10.00 | 20.0000 | 100.00 | ▇▂▁▁▁ |
numeric | calcium | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 20.5964912 | 37.9274965 | 0.000 | 6.0000 | 15.00 | 20.0000 | 290.00 | ▇▁▁▁▁ |
numeric | calcium | Sonic | 4 | 0.9245283 | NA | NA | NA | NA | NA | NA | NA | 17.2448980 | 12.0701605 | 1.000 | 8.0000 | 15.00 | 27.0000 | 40.00 | ▇▆▂▆▂ |
numeric | calcium | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 39.1250000 | 25.1321769 | 4.000 | 20.0000 | 35.00 | 60.0000 | 100.00 | ▇▇▆▂▁ |
numeric | calcium | Taco Bell | 89 | 0.2260870 | NA | NA | NA | NA | NA | NA | NA | 24.8076923 | 11.3314403 | 6.000 | 15.0000 | 25.00 | 35.0000 | 45.00 | ▃▆▂▇▂ |
numeric | Sodium.Grams | Arbys | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.5152727 | 0.6636651 | 0.100 | 0.9600 | 1.48 | 2.0200 | 3.35 | ▂▇▇▃▁ |
numeric | Sodium.Grams | Burger King | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.2235714 | 0.4998841 | 0.310 | 0.8500 | 1.15 | 1.6350 | 2.31 | ▅▇▅▆▂ |
numeric | Sodium.Grams | Chick Fil-A | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.1514815 | 0.7269203 | 0.220 | 0.7000 | 1.00 | 1.4050 | 3.66 | ▇▇▂▁▁ |
numeric | Sodium.Grams | Dairy Queen | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.1817857 | 0.6099398 | 0.015 | 0.8475 | 1.03 | 1.3625 | 3.50 | ▂▇▂▁▁ |
numeric | Sodium.Grams | Mcdonalds | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.4378947 | 1.0361721 | 0.020 | 0.8700 | 1.12 | 1.7800 | 6.08 | ▇▅▁▁▁ |
numeric | Sodium.Grams | Sonic | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.3507547 | 0.6651340 | 0.470 | 0.9000 | 1.25 | 1.5500 | 4.52 | ▇▆▂▁▁ |
numeric | Sodium.Grams | Subway | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.2729688 | 0.7436346 | 0.065 | 0.6975 | 1.13 | 1.6050 | 3.54 | ▅▇▃▁▂ |
numeric | Sodium.Grams | Taco Bell | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.0139130 | 0.4740544 | 0.290 | 0.6150 | 0.96 | 1.3000 | 2.26 | ▇▇▆▂▂ |
FastFood %>% group_by(restaurant,Chicken) %>% skim(Sodium.Grams) %>% kable() %>% scroll_box(width = "100%", height = "50%")
skim_type | skim_variable | restaurant | Chicken | n_missing | complete_rate | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
numeric | Sodium.Grams | Arbys | FALSE | 0 | 1 | 1.5728571 | 0.6980191 | 0.100 | 0.9850 | 1.515 | 2.0875 | 3.35 | ▂▇▆▅▁ |
numeric | Sodium.Grams | Arbys | TRUE | 0 | 1 | 1.3292308 | 0.5179038 | 0.640 | 0.9500 | 1.210 | 1.7500 | 2.11 | ▆▇▂▃▆ |
numeric | Sodium.Grams | Burger King | FALSE | 0 | 1 | 1.2105556 | 0.5032009 | 0.450 | 0.8050 | 1.160 | 1.5825 | 2.27 | ▇▇▆▇▂ |
numeric | Sodium.Grams | Burger King | TRUE | 0 | 1 | 1.2373529 | 0.5035348 | 0.310 | 0.8550 | 1.150 | 1.6400 | 2.31 | ▃▇▅▆▃ |
numeric | Sodium.Grams | Chick Fil-A | FALSE | 0 | 1 | 1.4800000 | 0.3959798 | 1.200 | 1.3400 | 1.480 | 1.6200 | 1.76 | ▇▁▁▁▇ |
numeric | Sodium.Grams | Chick Fil-A | TRUE | 0 | 1 | 1.1252000 | 0.7457888 | 0.220 | 0.6700 | 0.990 | 1.3500 | 3.66 | ▇▇▂▁▁ |
numeric | Sodium.Grams | Dairy Queen | FALSE | 0 | 1 | 1.0812069 | 0.4583348 | 0.015 | 0.9000 | 1.000 | 1.2500 | 2.21 | ▁▂▇▂▁ |
numeric | Sodium.Grams | Dairy Queen | TRUE | 0 | 1 | 1.4061538 | 0.8378200 | 0.670 | 0.8200 | 1.190 | 1.5300 | 3.50 | ▇▅▁▁▁ |
numeric | Sodium.Grams | Mcdonalds | FALSE | 0 | 1 | 1.3100000 | 0.9047535 | 0.480 | 0.8275 | 1.025 | 1.3775 | 4.45 | ▇▃▁▁▁ |
numeric | Sodium.Grams | Mcdonalds | TRUE | 0 | 1 | 1.5070270 | 1.1063902 | 0.020 | 0.9600 | 1.190 | 1.8200 | 6.08 | ▇▅▁▁▁ |
numeric | Sodium.Grams | Sonic | FALSE | 0 | 1 | 1.1874194 | 0.4170449 | 0.470 | 0.8650 | 1.180 | 1.4100 | 2.31 | ▆▇▇▃▁ |
numeric | Sodium.Grams | Sonic | TRUE | 0 | 1 | 1.5809091 | 0.8672557 | 0.670 | 0.9700 | 1.420 | 2.0250 | 4.52 | ▇▆▂▁▁ |
numeric | Sodium.Grams | Subway | FALSE | 0 | 1 | 1.2979375 | 0.7695501 | 0.065 | 0.7150 | 1.195 | 1.6050 | 3.54 | ▅▇▃▁▂ |
numeric | Sodium.Grams | Subway | TRUE | 0 | 1 | 1.1481250 | 0.6028070 | 0.280 | 0.6550 | 1.080 | 1.4100 | 2.28 | ▇▆▅▂▅ |
numeric | Sodium.Grams | Taco Bell | FALSE | 0 | 1 | 0.9808696 | 0.4597793 | 0.290 | 0.5925 | 0.930 | 1.2700 | 2.26 | ▇▇▆▂▁ |
numeric | Sodium.Grams | Taco Bell | TRUE | 0 | 1 | 1.1460870 | 0.5169644 | 0.460 | 0.7400 | 1.070 | 1.4950 | 2.23 | ▇▇▇▁▃ |
Is the analog to creating a pivot table in R by whatever groupings we wish.
FastFood %>% group_by(restaurant, Chicken) %>% summarise(Mean.Protein = mean(protein), Mean.Protein.NA = mean(protein, na.rm=TRUE))
# A tibble: 16 × 4
# Groups: restaurant [8]
restaurant Chicken Mean.Protein Mean.Protein.NA
<chr> <lgl> <dbl> <dbl>
1 Arbys FALSE 29.6 29.6
2 Arbys TRUE 28 28
3 Burger King FALSE NA 34.1
4 Burger King TRUE 25.8 25.8
5 Chick Fil-A FALSE 33.5 33.5
6 Chick Fil-A TRUE 31.6 31.6
7 Dairy Queen FALSE 23.3 23.3
8 Dairy Queen TRUE 28.3 28.3
9 Mcdonalds FALSE 36.2 36.2
10 Mcdonalds TRUE 42.5 42.5
11 Sonic FALSE 28.9 28.9
12 Sonic TRUE 29.5 29.5
13 Subway FALSE 28.7 28.7
14 Subway TRUE 38.4 38.4
15 Taco Bell FALSE 16.4 16.4
16 Taco Bell TRUE 21.3 21.3
We need ungroup()
when we want to combine mutate()
and group_by()
to calculate aggregate statistics for all relevant rows. Objects retain their grouped
status unless we actively remove it.
arrange()
We can use arrange to sort a result. For example,
We can use arrange to sort a result, and desc()
to flip it. For example,
# A tibble: 16 × 3
# Groups: restaurant [8]
restaurant Chicken Count
<chr> <lgl> <int>
1 Arbys FALSE 42
2 Arbys TRUE 13
3 Burger King FALSE 36
4 Burger King TRUE 34
5 Chick Fil-A FALSE 2
6 Chick Fil-A TRUE 25
7 Dairy Queen FALSE 29
8 Dairy Queen TRUE 13
9 Mcdonalds FALSE 20
10 Mcdonalds TRUE 37
11 Sonic FALSE 31
12 Sonic TRUE 22
13 Subway FALSE 80
14 Subway TRUE 16
15 Taco Bell FALSE 92
16 Taco Bell TRUE 23
fct_reorder()
]We could do it by hand.
FastFood %>% group_by(restaurant) %>%
summarise(Mean = mean(calories, na.rm=TRUE),
SD = sd(calories, na.rm=TRUE),
Min = min(calories, na.rm=TRUE),
Median = median(calories, na.rm=TRUE),
Max = max(calories, na.rm=TRUE),
Q1 = quantile(calories, 0.25, na.rm=TRUE),
Q3 = quantile(calories, 0.75, na.rm=TRUE))
# A tibble: 8 × 8
restaurant Mean SD Min Median Max Q1 Q3
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Arbys 533. 210. 70 550 1030 360 690
2 Burger King 609. 290. 190 555 1550 365 760
3 Chick Fil-A 384. 220. 70 390 970 220 480
4 Dairy Queen 520. 259. 20 485 1260 350 630
5 Mcdonalds 640. 411. 140 540 2430 380 740
6 Sonic 632. 301. 100 570 1350 410 740
7 Subway 503. 282. 50 460 1160 288. 740
8 Taco Bell 444. 184. 140 420 880 320 575
Four dplyr
verbs:
- filter()
- select()
- mutate()
/ transmute()
- summarise()
Two helpers:
- group_by()
and ungroup()
- arrange()
and desc()
Take our summary function from above. But now let me embed it in a function so that it will do it for any variable. Though it will work with any name [calories would do], I will be explicit. There are some [highlighted] programming tricks here but this could be adapted to any functions we might want.
library(rlang)
summarise.me <- function(data, var) {
data <- as.data.frame(data); var <- ensym(var)
Res <- data %>% summarise(
Mean = mean(!! var, na.rm=TRUE),
SD = sd(!! var, na.rm=TRUE),
Min = min(!! var, na.rm=TRUE),
Q1 = quantile(!! var, 0.25, na.rm=TRUE),
Median = median(!! var, na.rm=TRUE),
Q3 = quantile(!! var, 0.75, na.rm=TRUE),
Max = max(!! var, na.rm=TRUE))
return(Res)
}
Mean SD Min Q1 Median Q3 Max
1 27.89105 17.68392 1 16 24.5 36 186
DADM-P23