Linear regression (OLS)
Data : EPL
Response variable : Points
Explanatory variables: Wage.Bill.milGBP
Null hyp.: the effect of Wage.Bill.milGBP on Points is zero
Alt. hyp.: the effect of Wage.Bill.milGBP on Points is not zero
coefficient std.error t.value p.value
(Intercept) 32.116 2.749 11.683 < .001 ***
Wage.Bill.milGBP 0.240 0.030 8.042 < .001 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.782, Adjusted R-squared: 0.77
F-statistic: 64.675 df(1,18), p.value < .001
Nr obs: 20
How’s that done?
library(gvlma)gvlma(result$model)
Call:
lm(formula = form_upper, data = dataset)
Coefficients:
(Intercept) Wage.Bill.milGBP
32.1159 0.2402
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
gvlma(x = result$model)
Value p-value Decision
Global Stat 4.8001 0.30843 Assumptions acceptable.
Skewness 0.2378 0.62583 Assumptions acceptable.
Kurtosis 0.1547 0.69412 Assumptions acceptable.
Link Function 1.5649 0.21096 Assumptions acceptable.
Heteroscedasticity 2.8428 0.09178 Assumptions acceptable.